Stolarsky-3 Mean Labeling of Some Special Graphs

¹S.S.Sandhya, ²E.Ebin Raja Merly and ³S.Kavitha

¹Department of Mathematics, SreeAyyappa College for Women, Chunkankadai-629 003, Tamilnadu, India.

²Department of Mathematics, Nesamony Memorial Christian College, Marthandan-629 165, Tamilnadu, India.

³Department of Mathematics, Holy Cross College, Nagercoil -629 004, Tamilnadu, India.

Abstract

Let G = (V, E) be a graph with p vertices and q edges. G is said to be Stolarsky-3 Mean graph if each vertex $x \in V$ is assigned distinct labels f(x)from 1,2,...,q+1 and each edge e=uv is assigned the distinct labelsf(e=uv) =

 $\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}} \quad \text{(or)} \quad \left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}}\right] \text{ then the resulting edge}$

labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G and G is called a Stolarsky-3 Mean graph. In this paper we investigate the Stolarsky-3 Mean labeling of some special graphs.

Keywords: Graph Labeling, Mean Labeling, Stolarsky-3 Mean Labeling, Slanting Ladder, Triangular Ladder, H-graph, Twig graph, Middle graph, Total graph.

1. INTRODUCTION

The graphs G = (V,E) considered in this paper are finite, undirected and without loops or multiple edges. We follow Gallian[1] for all detailed survey of graph labeling and we refer Harary[2] for all other standard terminologies and notations. The concept of "Mean Labeling of graphs" has been introduced S. Somasundaram, R.Ponraj and S.S.Sandhya in 2004[3] and S.Somasundaram and S.S. Sandhya introduced the concept of "Harmonic Mean Labeling of graphs" in[4]. "Stolarsky-3 Mean Labeling of graphs" was introduced by S.S. Sandhya, E.Ebin Raja Merely and S.Kavitha [7].

The following definitions are necessary for the present study.

Definition 1.1: A graph G with p vertices and q edges is said to be Stolarsky-3 Mean graph if each vertex $x \in V$ is assigned distinct labels f(x) from 1, 2, ..., q+1 and each edge e=uv is assigned the distinct labels $f(e=uv) = \left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}}\right]$ (or)

 $\left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}}\right]$ then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G.

Definition 1.2: The Slanting ladder SL_n is a graph obtained from two points $u_1, u_2, ..., u_n \& v_1, v_2, ..., v_n$ by joining each u_i with $v_{i+1} \ 1 \le i \le n-1$.

Definition 1.3: A Triangular ladder is a graph obtained from L_n by adding the edges $u_i v_{i+1}$, $1 \le i \le n - 1$, where u_i and v_i $1 \le i \le n$ are the vertices of L_n such that $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ are two paths of length n in the graph L_n .

Definition 1.4: The H-graph of a path P_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, v_3, \ldots, v_n \& u_1, u_2, \ldots, u_n$ by joining the vertices $v_{\frac{n+1}{2}} \& u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1} \& u_{\frac{n}{2}}$ if n is even.

Definition 1.5: The Middle graph M(G) of a graph G is the graph whose vertex set is $V(G)\cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

Definition 1.6: The Total graph T(G) of graph G is the graph whose vertex set is $V(G)\cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.7: A graph G (V,E) obtained from a path by attaching exactly two pendant edges to each interval vertices of the path is called a Twig graph.

2. MAIN RESULTS

Theorem 2.1: Slanting Ladder SL_n is Stolarsky-3 Mean graph.

Proof: Let G be the slanting ladder graph with the vertices $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$.

Define a function $\mathbf{f}: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

 $f(u_i) = 3i , 1 \le i \le n - 1.$ $f(u_n) = 3n - 2.$ $f(v_1) = 1.$ $f(v_i) = 3i - 4, 2 \le i \le n.$

Then the edges are labeled with

 $\mathbf{f}(u_i u_{i+1}) = 3i+1, 1 \le i \le n-1.$

 $f(u_i v_{i+1}) = 3 i-1, 1 \le i \le n-1.$

$$f(v_1v_2) = 1.$$

 $\mathbf{f}(v_i v_{i+1}) = 3(i-1), 2 \le i \le n-2.$

Then the edge labels are distinct.

Hence SL_n is Stolarsky-3 Mean graph.

Example 2.2: The Stolarsky-3 Mean labeling of SL₆ is given below.

Figure:1

Theorem 2.3: Triangular Ladder TL_n is Stolarsky-3 Mean graph.

Proof: Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be two paths of length n.

Join u_i and v_i , $1 \le i \le n$, and join u_i and v_{i+1} , $1 \le i \le n - 1$. The resulting graph is TL_n.

Define a function $\mathbf{f} : V(TL_n) \rightarrow \{1, 2, ..., q+1\}$ by $\mathbf{f}(u_i) = 4\mathbf{i} \cdot 2, 1 \le i \le n.$ $\mathbf{f}(v_1) = 1.$ $\mathbf{f}(v_i) = 4(\mathbf{i} \cdot 1), 2 \le i \le n.$ Then the edges are labeled with $\mathbf{f}(u_i u_{i+1}) = 4\mathbf{i}, 1 \le i \le n - 1.$ $\mathbf{f}(u_i v_i) = 4\mathbf{i} \cdot 3, 1 \le i \le n.$ $\mathbf{f}(v_i v_{i+1}) = 4\mathbf{i} \cdot 2, 1 \le i \le n - 1.$ $\mathbf{f}(u_i v_{i+1}) = 4\mathbf{i} \cdot 1, 1 \le i \le n - 1.$ Then the edge labels are distinct.

Hence TL_n is Stolarsky-3 Mean graph.

Example 2.4: The Stolarsky-3 Mean labeling of TL_6 is given below.

Theorem 2.5: H graph is Stolarsky-3 Mean graph for all n if n is even and $n \le 11$ if n is odd.

Proof: Let G be the graph with the vertices $v_1, v_2, ..., v_n \& u_1, u_2, ..., u_n$. Define a function $\mathbf{f} : V(G) \rightarrow \{1, 2, ..., q+1\}$ by $f(v_i) = i, \quad 1 \le i \le n.$ $f(u_i) = n + i, \quad 1 \le i \le n.$ Then the edges are labeled as $f(v_i v_{i+1}) = i, \quad 1 \le i \le n - 1.$ $f(u_i u_{i+1}) = n + i, \quad 1 \le i \le n - 1.$ $f(\frac{v_{n+1}}{2} u_{n+1}) = n \quad \text{if } n \text{ is odd.}$ $f(\frac{v_n}{2} + 1 u_n) = n \quad \text{if } n \text{ is even.}$

Then we get distinct edge labels.

Hence f is Stolarsky-3 Mean labeling.

Example 2.6: The labeling pattern of H graph is given below.

Theorem 2.7: Twig graph T_m is Stolarsky-3 Mean graph.

Proof: Let *G* be the twig graph.

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n and $v_1, v_2, ..., v_{n-2} \& w_1, w_2, ..., w_{n-2}$ be two pendant vertices attached to u_i .

Define a function $\mathbf{f} : V(G) \to \{1, 2, ..., q+1\}$ by $\mathbf{f}(u_1) = 1$. $\mathbf{f}(u_i) = 3\mathbf{i} \cdot 4, \ 2 \le i \le n$. $\mathbf{f}(v_i) = 3\mathbf{i}, \ 1 \le i \le n - 2$. $\mathbf{f}(w_i) = 3\mathbf{i} + 1, \ 1 \le i \le n - 2$. Then the edges are labeled with $\mathbf{f}(u_i u_{i+1}) = 3\mathbf{i} \cdot 2, \ 1 \le i \le n - 1$. $\mathbf{f}(v_i u_i) = 3\mathbf{i} \cdot 1, \ 1 \le i \le n - 2$. $\mathbf{f}(w_i u_i) = 3\mathbf{i}, \ 1 \le i \le n - 2$. Then the edge labels are distinct.

Hence **f** is Stolarsky-3 Mean labeling.

Example 2.8: The Stolarsky-3 Mean labeling of Twig graph T_3 is given below.

Theorem 2.9: Middle graph M(P_n) is Stolarsky-3 Mean graph.

Proof: Let $u_1, u_2, ..., u_n \& v_1, v_2, ..., v_{n-1}$ be the vertices of the middle graph $G=M(P_n)$.

By definition of middle graph V(M(P_n)) = V(P_n) UE(P_n) and whose edge set is $E(M(P_n) = \begin{cases} u_i v_i, 1 \le i \le n-1 \\ u_i v_{i-1}, 2 \le i \le n \\ v_i v_{i+1}, 1 \le i \le n-2 \end{cases}$ Here |V(G)| = 2n-1 and |E(G)| = 3n-4. We define f: V(G) \rightarrow {1,2,3,...,q+1} by $f(u_1) = 1$. $f(u_i) = 3i, 2 \le i \le n$. $f(v_i) = 3i-1, 1 \le i \le n-1$. Then the edges are labeled with $f(u_i v_i) = 3i - 2, 1 \le i \le n - 1$. $f(u_i v_{i-1}) = 3i - 1, 2 \le i \le n - 1$.

 $f(v_i v_{i+1}) = 3$ i, $1 \le i \le n - 2$.

Then the edge labels are distinct.

Hence Middle graph $M(P_n)$ is stolarsky-3 Mean graph.

Theorem 2.11: Total graph $T(P_n)$ is Stolarsky-3 Mean graph.

Proof: Let $u_1, u_2, ..., u_n \& v_1, v_2, ..., v_{n-1}$ be the vertices of the Total graph $T(P_n)$. By definition of Total graph V (T (P_n)) = V (P_n) \cup E (P_n) and

$$E(T(P_n)) = \begin{cases} u_i u_{i+1}, 1 \le i \le n-1, \\ u_i v_i, 1 \le i \le n-1, \\ u_i v_{i-1}, 2 \le i \le n, \\ v_i v_{i+1}, 1 \le i \le n-2. \end{cases}$$

Here |V(G)|=2n-1 and |E(G)|=4n-5. Define $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ as follows.

$$\mathbf{f}(u_1) = 2.$$

 $\mathbf{f}(u_i) = 4i-1, \ 2 \le i \le n.$

$$f(v_i) = 4i-3, 1 \le i \le n-1.$$

Then the edges are labeled with

 $\mathbf{f}(u_i u_{i+1}) = 4i -2, \ 1 \le i \le n - 1.$

 $\mathbf{f}(u_i v_i) = 4i -3, \ 1 \le i \le n - 1.$

 $\mathbf{f}(u_i v_{i-1}) = 4i -2, \ 2 \le i \le n.$

$$\mathbf{f}(v_i v_{i+1}) = 4\mathbf{i} , \ 1 \le i \le n-2.$$

Then the edge labels are distinct.

Hence T (P_n) is Stolarsky-3 Mean graph.

Example 2.12: The Stolarsky-3 Mean labeling of $T(P_6)$ is given below.

REFERENCES

- [1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017),#DS6.
- [2] F.Harary, 1988, "Graph Theory" Narosa Puplishing House Reading, New Delhi.
- [3] S.Somasundram, and R.Ponraj 2003 "Mean Labeling of Graphs", National Academy of Science Letters Vol. 26, p.210-213.
- [4] S.Somasundram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling of Graphs" communicated to Journal of Combinatorial Mathematics and combinational computing.
- [5] S.S.Sandhya, S.Somasundram and S. Anusa "Some More Results on Root Square Mean Graphs" Journal of Mathematics Research; Vol.7, No.1; 2015.
- [6] S.Somasundaram and R.Ponraj, Some results on mean graphs, Pure & applied Mathematica Sciences 58(2003), 29-35.
- [7] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Graphs" Communicated to Journal of discrete Mathematical Sciences and Cryptography".
- [8] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Some New Results on Super Stolarsky-3 Mean Labeling" Communicated to International Journal of Mathematics Research.

S.S.Sandhya, E.Ebin Raja Merly and S.Kavitha