Stolarsky-3 Mean Labeling of Some Special Graphs

${ }^{2}$ Department of Mathematics, Nesamony Memorial Christian College, Marthandan-629 165, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, Holy Cross College , Nagercoil -629 004, Tamilnadu, India.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. G is said to be Stolarsky-3 Mean graph if each vertex $x \in V$ is assigned distinct labels $f(x)$ from $1,2, \ldots, \mathrm{q}+1$ and each edge $\mathrm{e}=\mathrm{uv}$ is assigned the distinct labelsf($\mathrm{e}=\mathrm{uv}$) $=$ $\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called a Stolarsky- 3 Mean labeling of G and G is called a Stolarsky-3 Mean graph. In this paper we investigate the Stolarsky-3 Mean labeling of some special graphs.

Keywords: Graph Labeling, Mean Labeling, Stolarsky-3 Mean Labeling, Slanting Ladder, Triangular Ladder, H-graph, Twig graph, Middle graph, Total graph.

1. INTRODUCTION

The graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ considered in this paper are finite, undirected and without loops or multiple edges. We follow Gallian[1] for all detailed survey of graph labeling and we refer Harary[2] for all other standard terminologies and notations. The concept of "Mean Labeling of graphs" has been introduced S. Somasundaram, R.Ponraj and S.S.Sandhya in 2004[3] and S.Somasundaram and S.S. Sandhya introduced the concept of "Harmonic Mean Labeling of graphs" in[4]. "Stolarsky-3 Mean Labeling of graphs" was introduced by S.S. Sandhya, E.Ebin Raja Merely and S.Kavitha [7].

The following definitions are necessary for the present study.

Definition 1.1: A graph G with p vertices and q edges is said to be Stolarsky-3 Mean graph if each vertex $x \in V$ is assigned distinct labels $f(x)$ from $1,2, \ldots, q+1$ and each edge $\mathrm{e}=\mathrm{uv}$ is assigned the distinct labels $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G.

Definition 1.2: The Slanting ladder SL_{n} is a graph obtained from two points $u_{1}, u_{2}, \ldots, u_{n} \& v_{1}, v_{2}, \ldots, v_{n}$ by joining each u_{i} with $v_{i+1} 1 \leq i \leq n-1$.

Definition 1.3: A Triangular ladder is a graph obtained from L_{n} by adding the edges $u_{i} v_{i+1}, 1 \leq i \leq n-1$, where u_{i} and $v_{i} 1 \leq i \leq n$ are the vertices of L_{n} such that $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ are two paths of length n in the graph L_{n}.

Definition 1.4: The H-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \ldots, v_{n} \& u_{1}, u_{2}, \ldots ., u_{n}$ by joining the vertices $\frac{v_{\frac{n+1}{2}}}{\&} \frac{u_{\frac{n+1}{2}}}{}$ if n is odd and the vertices $v_{\frac{n}{2}+1} \& u_{\frac{n}{2}}$ if n is even.

Definition 1.5: : The Middle graph $\mathrm{M}(\mathrm{G})$ of a graph G is the graph whose vertex set is $\mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G})$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

Definition 1.6: The Total graph $T(G)$ of graph G is the graph whose vertex set is $\mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G})$ and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.7: A graph $G(V, E)$ obtained from a path by attaching exactly two pendant edges to each interval vertices of the path is called a Twig graph.

2. MAIN RESULTS

Theorem 2.1: Slanting Ladder SL_{n} is Stolarsky-3 Mean graph.
Proof: Let G be the slanting ladder graph with the vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$.

Define a function $\mathbf{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{n}\right)=3 \mathrm{n}-2$.
$\mathbf{f}\left(v_{1}\right)=1$.
$\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-4,2 \leq i \leq n$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=3 \mathrm{i}+1,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} \boldsymbol{v}_{i+1}\right)=3 \mathrm{i}-1,1 \leq i \leq n-1$.
$\mathbf{f}\left(v_{1} v_{2}\right)=1$.
$\mathbf{f}\left(v_{i} v_{i+1}\right)=3(\mathrm{i}-1), 2 \leq i \leq n-2$.
Then the edge labels are distinct.
Hence $S L_{n}$ is Stolarsky-3 Mean graph.
Example 2.2: The Stolarsky-3 Mean labeling of SL_{6} is given below.

Figure: 1

Theorem 2.3: Triangular Ladder TL_{n} is Stolarsky-3 Mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be two paths of length n .
Join u_{i} and $\mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$, and join u_{i} and $v_{i+1}, 1 \leq i \leq n-1$. The resulting graph is $T L_{n}$.

Define a function $\mathbf{f}: \mathrm{V}\left(\mathrm{T} L_{n}\right) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-2,1 \leq i \leq n$.
$\mathbf{f}\left(v_{1}\right)=1$.
$\mathbf{f}\left(v_{i}\right)=4(\mathrm{i}-1), 2 \leq i \leq n$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=4 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=4$ i $-3,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i} v_{i+1}\right)=4 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i+1}\right)=4 \mathrm{i}-1,1 \leq i \leq n-1$.
Then the edge labels are distinct.
Hence $T L_{n}$ is Stolarsky-3 Mean graph.

Example 2.4: The Stolarsky-3 Mean labeling of $\mathrm{T} L_{6}$ is given below.

Figure:2

Theorem 2.5: H graph is Stolarsky-3 Mean graph for all n if n is even and $\mathrm{n} \leq 11$ if n is odd.

Proof: Let G be the graph with the vertices $v_{1}, v_{2}, \ldots, v_{n} \& u_{1}, u_{2}, \ldots, u_{n}$.
Define a function $\mathbf{f}: \mathrm{V}(G) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by

$$
\begin{aligned}
& \mathbf{f}\left(v_{i}\right)=\mathrm{i}, \quad 1 \leq i \leq n . \\
& \mathbf{f}\left(u_{i}\right)=\mathrm{n}+\mathrm{i}, \quad 1 \leq i \leq n .
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& \mathbf{f}\left(v_{i} v_{i+1}\right)=\mathrm{i}, 1 \leq i \leq n-1 \\
& \mathbf{f}\left(u_{i} u_{i+1}\right)=\mathrm{n}+\mathrm{i}, 1 \leq i \leq n-1 \\
& \mathbf{f}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=\mathrm{n} \text { if } \mathrm{n} \text { is odd. }
\end{aligned}
$$

$\mathbf{f}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right)=n$ if n is even.
Then we get distinct edge labels.
Hence \mathbf{f} is Stolarsky-3 Mean labeling.

Example 2.6: The labeling pattern of H graph is given below.
When $\mathrm{n}=5$

When $n=6$

Figure: 3

Theorem 2.7: Twig graph T_{m} is Stolarsky-3 Mean graph.
Proof: Let G be the twig graph.
Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and $v_{1}, v_{2}, \ldots, v_{n-2} \& w_{1}, w_{2}, \ldots, w_{n-2}$ be two pendant vertices attached to u_{i}.
Define a function $\mathbf{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{1}\right)=1$.
$\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}-4,2 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}, \quad 1 \leq i \leq n-2$.
$\mathbf{f}\left(w_{i}\right)=3 \mathrm{i}+1,1 \leq i \leq n-2$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=3 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(v_{i} u_{i}\right)=3$ i $-1,1 \leq i \leq n-2$.
$\mathbf{f}\left(w_{i} u_{i}\right)=3 \mathrm{i}, 1 \leq i \leq n-2$.

Then the edge labels are distinct.
Hence \mathbf{f} is Stolarsky-3 Mean labeling.

Example 2.8: The Stolarsky-3 Mean labeling of Twig graph T_{3} is given below.

Figure 4

Theorem 2.9: Middle graph $M\left(P_{n}\right)$ is Stolarsky-3 Mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n} \& v_{1}, v_{2}, \ldots, v_{n-1}$ be the vertices of the middle graph $\mathrm{G}=\mathrm{M}\left(\mathrm{P}_{\mathrm{n}}\right)$.

By definition of middle graph $\mathrm{V}\left(\mathrm{M}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)$ and whose edge set is
$\mathrm{E}\left(\mathrm{M}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\begin{array}{c}u_{i} v_{i}, 1 \leq i \leq n-1 \\ u_{i} v_{i-1}, 2 \leq i \leq n \\ v_{i} v_{i+!}, 1 \leq i \leq n-2\end{array}\right.\right.$
Here $|V(G)|=2 \mathrm{n}-1$ and $|E(G)|=3 \mathrm{n}-4$.
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{q}+1\}$ by
$\mathbf{f}\left(u_{1}\right)=1$.
$\mathbf{f}\left(u_{i}\right)=3 \mathrm{i}, \quad 2 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=3 \mathrm{i}-1, \quad 1 \leq i \leq n-1$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} v_{i}\right)=3 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i-1}\right)=3$ i $-1,2 \leq i \leq n-1$.
$\mathbf{f}\left(v_{i} v_{i+1}\right)=3 \mathrm{i}, 1 \leq i \leq n-2$.
Then the edge labels are distinct.
Hence Middle graph $\mathrm{M}\left(\mathrm{P}_{\mathrm{n}}\right)$ is stolarsky-3 Mean graph.

Example 2.10: The Stolarsky-3 Mean labeling of $\mathrm{M}\left(\mathrm{P}_{6}\right)$ is given below.

Figure: 5

Theorem 2.11: Total graph $\mathrm{T}\left(P_{n}\right)$ is Stolarsky-3 Mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n} \& v_{1}, v_{2}, \ldots, v_{n-1}$ be the vertices of the Total graph $\mathrm{T}\left(P_{n}\right)$.
By definition of Total graph $\mathrm{V}\left(\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)$ and
$\mathrm{E}\left(\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\left\{\begin{array}{l}u_{i} u_{i+1}, 1 \leq i \leq n-1 . \\ u_{i} v_{i}, 1 \leq i \leq n-1 . \\ u_{i} v_{i-1}, 2 \leq i \leq n . \\ v_{i} v_{i+1}, 1 \leq i \leq n-2 .\end{array}\right.$
Here $|V(G)|=2 \mathrm{n}-1 \quad$ and $\quad \mid E(G \mid=4 \mathrm{n}-5$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots, \mathrm{q}+1\}$ as follows.
$\mathbf{f}\left(u_{1}\right)=2$.
$\mathbf{f}\left(u_{i}\right)=4 \mathrm{i}-1, \quad 2 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=4 \mathrm{i}-3, \quad 1 \leq i \leq n-1$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=4 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=4 \mathrm{i}-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i-1}\right)=4 \mathrm{i}-2,2 \leq i \leq n$.
$\mathbf{f}\left(v_{i} v_{i+1}\right)=4 \mathrm{i}, 1 \leq i \leq n-2$.
Then the edge labels are distinct.
Hence T $\left(P_{n}\right)$ is Stolarsky-3 Mean graph.

Example 2.12: The Stolarsky-3 Mean labeling of $T\left(\mathrm{P}_{6}\right)$ is given below.

Figure: 6

REFERENCES

[1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017),\#DS6.
[2] F.Harary, 1988, "Graph Theory" Narosa Puplishing House Reading, New Delhi.
[3] S.Somasundram, and R.Ponraj 2003 "Mean Labeling of Graphs", National Academy of Science Letters Vol. 26, p.210-213.
[4] S.Somasundram, R.Ponraj and S.S.Sandhya, " Harmonic Mean Labeling of Graphs" communicated to Journal of Combinatorial Mathematics and combinational computing.
[5] S.S.Sandhya, S.Somasundram and S. Anusa " Some More Results on Root Square Mean Graphs" Journal of Mathematics Research; Vol.7, No.1; 2015.
[6] S.Somasundaram and R.Ponraj, Some results on mean graphs, Pure \& applied Mathematica Sciences 58(2003), 29-35.
[7] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Graphs" Communicated to Journal of discrete Mathematical Sciences and Cryptography".
[8] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Some New Results on Super Stolarsky-3 Mean Labeling" Communicated to International Journal of Mathematics Research.

